Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Cameras are deployed at scale with the purpose of searching and tracking objects of interest (e.g., a suspected person) through the camera network on live videos. Such cross-camera analytics is data and compute intensive, whose costs grow with the number of cameras and time. We present Spatula, a cost-efficient system that enables scaling cross-camera analytics on edge compute boxes to large camera networks by leveraging the spatial and temporal cross-camera correlations. While such correlations have been used in computer vision community, Spatula uses them to drastically reduce the communication and computation costs by pruning search space of a query identity (e.g., ignoring frames not correlated with the query identity’s current position). Spatula provides the first system substrate on which cross-camera analytics applications can be built to efficiently harness the cross-camera correlations that are abundant in large camera deployments. Spatula reduces compute load by $$8.3\times$$ on an 8-camera dataset, and by $$23\times-86\times$$ on two datasets with hundreds of cameras (simulated from real vehicle/pedestrian traces). We have also implemented Spatula on a testbed of 5 AWS DeepLens cameras.more » « less
-
Whispering-gallery-mode optical microresonators have found impactful applications in various areas due to their remarkable properties such as ultra-high quality factor (Q-factor), small mode volume, and strong evanescent field. Among these applications, controllable tuning of the optical Q-factor is vital for on-chip optical modulation and various opto-electronic devices. Here, we report an experimental demonstration with a hybrid structure formed by an ultra-high-Q microtoroid cavity and a graphene monolayer. Thanks to the strong interaction of the evanescent wave with the graphene, the structure allows the Q-factor to be controllably varied in the range of 3.9 × 105∼ 6.2 × 107by engineering optical absorption via changing the gap distance in between. At the same time, a resonant wavelength shift of 32 pm was also observed. Besides, the scheme enables us to approach the critical coupling with a coupling depth of 99.6%. As potential applications in integrated opto-electronic devices, we further use the system to realize a tunable optical filter with tunable bandwidth from 116.5 MHz to 2.2 GHz as well as an optical switch with a maximal extinction ratio of 31 dB and response time of 21 ms.more » « less
An official website of the United States government

Full Text Available